use crate::{ AbsoluteLength, Bounds, DefiniteLength, Edges, Length, Pixels, Point, Size, Style, WindowContext, }; use collections::{FxHashMap, FxHashSet}; use smallvec::SmallVec; use std::fmt::Debug; use taffy::{ geometry::{Point as TaffyPoint, Rect as TaffyRect, Size as TaffySize}, style::AvailableSpace as TaffyAvailableSpace, tree::NodeId, TaffyTree, TraversePartialTree as _, }; type NodeMeasureFn = Box>, Size, &mut WindowContext) -> Size>; pub struct TaffyLayoutEngine { taffy: TaffyTree<()>, styles: FxHashMap, children_to_parents: FxHashMap, absolute_layout_bounds: FxHashMap>, computed_layouts: FxHashSet, nodes_to_measure: FxHashMap, } static EXPECT_MESSAGE: &str = "we should avoid taffy layout errors by construction if possible"; impl TaffyLayoutEngine { pub fn new() -> Self { TaffyLayoutEngine { taffy: TaffyTree::new(), styles: FxHashMap::default(), children_to_parents: FxHashMap::default(), absolute_layout_bounds: FxHashMap::default(), computed_layouts: FxHashSet::default(), nodes_to_measure: FxHashMap::default(), } } pub fn clear(&mut self) { self.taffy.clear(); self.children_to_parents.clear(); self.absolute_layout_bounds.clear(); self.computed_layouts.clear(); self.nodes_to_measure.clear(); self.styles.clear(); } pub fn request_layout( &mut self, style: Style, rem_size: Pixels, children: &[LayoutId], ) -> LayoutId { let taffy_style = style.to_taffy(rem_size); let layout_id = if children.is_empty() { self.taffy .new_leaf(taffy_style) .expect(EXPECT_MESSAGE) .into() } else { let parent_id = self .taffy // This is safe because LayoutId is repr(transparent) to taffy::tree::NodeId. .new_with_children(taffy_style, unsafe { std::mem::transmute(children) }) .expect(EXPECT_MESSAGE) .into(); self.children_to_parents .extend(children.into_iter().map(|child_id| (*child_id, parent_id))); parent_id }; self.styles.insert(layout_id, style); layout_id } pub fn request_measured_layout( &mut self, style: Style, rem_size: Pixels, measure: impl FnMut(Size>, Size, &mut WindowContext) -> Size + 'static, ) -> LayoutId { let taffy_style = style.to_taffy(rem_size); let layout_id = self .taffy .new_leaf_with_context(taffy_style, ()) .expect(EXPECT_MESSAGE) .into(); self.nodes_to_measure.insert(layout_id, Box::new(measure)); self.styles.insert(layout_id, style); layout_id } // Used to understand performance #[allow(dead_code)] fn count_all_children(&self, parent: LayoutId) -> anyhow::Result { let mut count = 0; for child in self.taffy.children(parent.0)? { // Count this child. count += 1; // Count all of this child's children. count += self.count_all_children(LayoutId(child))? } Ok(count) } // Used to understand performance #[allow(dead_code)] fn max_depth(&self, depth: u32, parent: LayoutId) -> anyhow::Result { println!( "{parent:?} at depth {depth} has {} children", self.taffy.child_count(parent.0) ); let mut max_child_depth = 0; for child in self.taffy.children(parent.0)? { max_child_depth = std::cmp::max(max_child_depth, self.max_depth(0, LayoutId(child))?); } Ok(depth + 1 + max_child_depth) } // Used to understand performance #[allow(dead_code)] fn get_edges(&self, parent: LayoutId) -> anyhow::Result> { let mut edges = Vec::new(); for child in self.taffy.children(parent.0)? { edges.push((parent, LayoutId(child))); edges.extend(self.get_edges(LayoutId(child))?); } Ok(edges) } pub fn compute_layout( &mut self, id: LayoutId, available_space: Size, cx: &mut WindowContext, ) { // Leaving this here until we have a better instrumentation approach. // println!("Laying out {} children", self.count_all_children(id)?); // println!("Max layout depth: {}", self.max_depth(0, id)?); // Output the edges (branches) of the tree in Mermaid format for visualization. // println!("Edges:"); // for (a, b) in self.get_edges(id)? { // println!("N{} --> N{}", u64::from(a), u64::from(b)); // } // println!(""); // if !self.computed_layouts.insert(id) { let mut stack = SmallVec::<[LayoutId; 64]>::new(); stack.push(id); while let Some(id) = stack.pop() { self.absolute_layout_bounds.remove(&id); stack.extend( self.taffy .children(id.into()) .expect(EXPECT_MESSAGE) .into_iter() .map(Into::into), ); } } // let started_at = std::time::Instant::now(); self.taffy .compute_layout_with_measure( id.into(), available_space.into(), |known_dimensions, available_space, node_id, _context| { let Some(measure) = self.nodes_to_measure.get_mut(&node_id.into()) else { return taffy::geometry::Size::default(); }; let known_dimensions = Size { width: known_dimensions.width.map(Pixels), height: known_dimensions.height.map(Pixels), }; measure(known_dimensions, available_space.into(), cx).into() }, ) .expect(EXPECT_MESSAGE); // println!("compute_layout took {:?}", started_at.elapsed()); } pub fn layout_bounds(&mut self, id: LayoutId) -> Bounds { if let Some(layout) = self.absolute_layout_bounds.get(&id).cloned() { return layout; } let layout = self.taffy.layout(id.into()).expect(EXPECT_MESSAGE); let mut bounds = Bounds { origin: layout.location.into(), size: layout.size.into(), }; if let Some(parent_id) = self.children_to_parents.get(&id).copied() { let parent_bounds = self.layout_bounds(parent_id); bounds.origin += parent_bounds.origin; } self.absolute_layout_bounds.insert(id, bounds); bounds } } /// A unique identifier for a layout node, generated when requesting a layout from Taffy #[derive(Copy, Clone, Eq, PartialEq, Debug)] #[repr(transparent)] pub struct LayoutId(NodeId); impl std::hash::Hash for LayoutId { fn hash(&self, state: &mut H) { u64::from(self.0).hash(state); } } impl From for LayoutId { fn from(node_id: NodeId) -> Self { Self(node_id) } } impl From for NodeId { fn from(layout_id: LayoutId) -> NodeId { layout_id.0 } } trait ToTaffy { fn to_taffy(&self, rem_size: Pixels) -> Output; } impl ToTaffy for Style { fn to_taffy(&self, rem_size: Pixels) -> taffy::style::Style { taffy::style::Style { display: self.display, overflow: self.overflow.into(), scrollbar_width: self.scrollbar_width, position: self.position, inset: self.inset.to_taffy(rem_size), size: self.size.to_taffy(rem_size), min_size: self.min_size.to_taffy(rem_size), max_size: self.max_size.to_taffy(rem_size), aspect_ratio: self.aspect_ratio, margin: self.margin.to_taffy(rem_size), padding: self.padding.to_taffy(rem_size), border: self.border_widths.to_taffy(rem_size), align_items: self.align_items, align_self: self.align_self, align_content: self.align_content, justify_content: self.justify_content, gap: self.gap.to_taffy(rem_size), flex_direction: self.flex_direction, flex_wrap: self.flex_wrap, flex_basis: self.flex_basis.to_taffy(rem_size), flex_grow: self.flex_grow, flex_shrink: self.flex_shrink, ..Default::default() // Ignore grid properties for now } } } impl ToTaffy for Length { fn to_taffy(&self, rem_size: Pixels) -> taffy::prelude::LengthPercentageAuto { match self { Length::Definite(length) => length.to_taffy(rem_size), Length::Auto => taffy::prelude::LengthPercentageAuto::Auto, } } } impl ToTaffy for Length { fn to_taffy(&self, rem_size: Pixels) -> taffy::prelude::Dimension { match self { Length::Definite(length) => length.to_taffy(rem_size), Length::Auto => taffy::prelude::Dimension::Auto, } } } impl ToTaffy for DefiniteLength { fn to_taffy(&self, rem_size: Pixels) -> taffy::style::LengthPercentage { match self { DefiniteLength::Absolute(length) => match length { AbsoluteLength::Pixels(pixels) => { taffy::style::LengthPercentage::Length(pixels.into()) } AbsoluteLength::Rems(rems) => { taffy::style::LengthPercentage::Length((*rems * rem_size).into()) } }, DefiniteLength::Fraction(fraction) => { taffy::style::LengthPercentage::Percent(*fraction) } } } } impl ToTaffy for DefiniteLength { fn to_taffy(&self, rem_size: Pixels) -> taffy::style::LengthPercentageAuto { match self { DefiniteLength::Absolute(length) => match length { AbsoluteLength::Pixels(pixels) => { taffy::style::LengthPercentageAuto::Length(pixels.into()) } AbsoluteLength::Rems(rems) => { taffy::style::LengthPercentageAuto::Length((*rems * rem_size).into()) } }, DefiniteLength::Fraction(fraction) => { taffy::style::LengthPercentageAuto::Percent(*fraction) } } } } impl ToTaffy for DefiniteLength { fn to_taffy(&self, rem_size: Pixels) -> taffy::style::Dimension { match self { DefiniteLength::Absolute(length) => match length { AbsoluteLength::Pixels(pixels) => taffy::style::Dimension::Length(pixels.into()), AbsoluteLength::Rems(rems) => { taffy::style::Dimension::Length((*rems * rem_size).into()) } }, DefiniteLength::Fraction(fraction) => taffy::style::Dimension::Percent(*fraction), } } } impl ToTaffy for AbsoluteLength { fn to_taffy(&self, rem_size: Pixels) -> taffy::style::LengthPercentage { match self { AbsoluteLength::Pixels(pixels) => taffy::style::LengthPercentage::Length(pixels.into()), AbsoluteLength::Rems(rems) => { taffy::style::LengthPercentage::Length((*rems * rem_size).into()) } } } } impl From> for Point where T: Into, T2: Clone + Default + Debug, { fn from(point: TaffyPoint) -> Point { Point { x: point.x.into(), y: point.y.into(), } } } impl From> for TaffyPoint where T: Into + Clone + Default + Debug, { fn from(val: Point) -> Self { TaffyPoint { x: val.x.into(), y: val.y.into(), } } } impl ToTaffy> for Size where T: ToTaffy + Clone + Default + Debug, { fn to_taffy(&self, rem_size: Pixels) -> TaffySize { TaffySize { width: self.width.to_taffy(rem_size), height: self.height.to_taffy(rem_size), } } } impl ToTaffy> for Edges where T: ToTaffy + Clone + Default + Debug, { fn to_taffy(&self, rem_size: Pixels) -> TaffyRect { TaffyRect { top: self.top.to_taffy(rem_size), right: self.right.to_taffy(rem_size), bottom: self.bottom.to_taffy(rem_size), left: self.left.to_taffy(rem_size), } } } impl From> for Size where T: Into, U: Clone + Default + Debug, { fn from(taffy_size: TaffySize) -> Self { Size { width: taffy_size.width.into(), height: taffy_size.height.into(), } } } impl From> for TaffySize where T: Into + Clone + Default + Debug, { fn from(size: Size) -> Self { TaffySize { width: size.width.into(), height: size.height.into(), } } } /// The space available for an element to be laid out in #[derive(Copy, Clone, Default, Debug, Eq, PartialEq)] pub enum AvailableSpace { /// The amount of space available is the specified number of pixels Definite(Pixels), /// The amount of space available is indefinite and the node should be laid out under a min-content constraint #[default] MinContent, /// The amount of space available is indefinite and the node should be laid out under a max-content constraint MaxContent, } impl AvailableSpace { /// Returns a `Size` with both width and height set to `AvailableSpace::MinContent`. /// /// This function is useful when you want to create a `Size` with the minimum content constraints /// for both dimensions. /// /// # Examples /// /// ``` /// let min_content_size = AvailableSpace::min_size(); /// assert_eq!(min_content_size.width, AvailableSpace::MinContent); /// assert_eq!(min_content_size.height, AvailableSpace::MinContent); /// ``` pub const fn min_size() -> Size { Size { width: Self::MinContent, height: Self::MinContent, } } } impl From for TaffyAvailableSpace { fn from(space: AvailableSpace) -> TaffyAvailableSpace { match space { AvailableSpace::Definite(Pixels(value)) => TaffyAvailableSpace::Definite(value), AvailableSpace::MinContent => TaffyAvailableSpace::MinContent, AvailableSpace::MaxContent => TaffyAvailableSpace::MaxContent, } } } impl From for AvailableSpace { fn from(space: TaffyAvailableSpace) -> AvailableSpace { match space { TaffyAvailableSpace::Definite(value) => AvailableSpace::Definite(Pixels(value)), TaffyAvailableSpace::MinContent => AvailableSpace::MinContent, TaffyAvailableSpace::MaxContent => AvailableSpace::MaxContent, } } } impl From for AvailableSpace { fn from(pixels: Pixels) -> Self { AvailableSpace::Definite(pixels) } } impl From> for Size { fn from(size: Size) -> Self { Size { width: AvailableSpace::Definite(size.width), height: AvailableSpace::Definite(size.height), } } }