surrealpatch/lib/src/idx/planner/plan.rs

406 lines
9.7 KiB
Rust

use crate::err::Error;
use crate::idx::ft::MatchRef;
use crate::idx::planner::tree::{IndexRef, Node};
use crate::sql::with::With;
use crate::sql::{Array, Object};
use crate::sql::{Expression, Idiom, Operator, Value};
use std::collections::hash_map::Entry;
use std::collections::{HashMap, HashSet};
use std::hash::Hash;
use std::sync::Arc;
pub(super) struct PlanBuilder {
indexes: Vec<(Arc<Expression>, IndexOption)>,
range_queries: HashMap<IndexRef, RangeQueryBuilder>,
with_indexes: Vec<IndexRef>,
all_and: bool,
all_exp_with_index: bool,
}
impl PlanBuilder {
pub(super) fn build(
root: Node,
with: &Option<With>,
with_indexes: Vec<IndexRef>,
) -> Result<Plan, Error> {
if let Some(With::NoIndex) = with {
return Ok(Plan::TableIterator(Some("WITH NOINDEX".to_string())));
}
let mut b = PlanBuilder {
indexes: Vec::new(),
range_queries: HashMap::new(),
with_indexes,
all_and: true,
all_exp_with_index: true,
};
// Browse the AST and collect information
if let Err(e) = b.eval_node(root) {
return Ok(Plan::TableIterator(Some(e.to_string())));
}
// If we didn't found any index, we're done with no index plan
if b.indexes.is_empty() {
return Ok(Plan::TableIterator(Some("NO INDEX FOUND".to_string())));
}
// If every boolean operator are AND then we can use the single index plan
if b.all_and {
// TODO: This is currently pretty arbitrary
// We take the "first" range query if one is available
if let Some((ir, rq)) = b.range_queries.drain().take(1).next() {
return Ok(Plan::SingleIndexMultiExpression(ir, rq));
}
// Otherwise we take the first single index option
if let Some((e, i)) = b.indexes.pop() {
return Ok(Plan::SingleIndex(e, i));
}
}
// If every expression is backed by an index with can use the MultiIndex plan
if b.all_exp_with_index {
return Ok(Plan::MultiIndex(b.indexes));
}
Ok(Plan::TableIterator(None))
}
// Check if we have an explicit list of index we can use
fn filter_index_option(&self, io: Option<IndexOption>) -> Option<IndexOption> {
if let Some(io) = &io {
if !self.with_indexes.is_empty() && !self.with_indexes.contains(&io.ir()) {
return None;
}
}
io
}
fn eval_node(&mut self, node: Node) -> Result<(), String> {
match node {
Node::Expression {
io,
left,
right,
exp,
} => {
if self.all_and && Operator::Or.eq(exp.operator()) {
self.all_and = false;
}
let is_bool = self.check_boolean_operator(exp.operator());
if let Some(io) = self.filter_index_option(io) {
self.add_index_option(exp, io);
} else if self.all_exp_with_index && !is_bool {
self.all_exp_with_index = false;
}
self.eval_node(*left)?;
self.eval_node(*right)?;
Ok(())
}
Node::Unsupported(reason) => Err(reason),
_ => Ok(()),
}
}
fn check_boolean_operator(&mut self, op: &Operator) -> bool {
match op {
Operator::Neg | Operator::Or => {
if self.all_and {
self.all_and = false;
}
true
}
Operator::And => true,
_ => false,
}
}
fn add_index_option(&mut self, exp: Arc<Expression>, io: IndexOption) {
if let IndexOperator::RangePart(o, v) = io.op() {
match self.range_queries.entry(io.ir()) {
Entry::Occupied(mut e) => {
e.get_mut().add(exp.clone(), o, v);
}
Entry::Vacant(e) => {
let mut b = RangeQueryBuilder::default();
b.add(exp.clone(), o, v);
e.insert(b);
}
}
}
self.indexes.push((exp, io));
}
}
pub(super) enum Plan {
TableIterator(Option<String>),
SingleIndex(Arc<Expression>, IndexOption),
MultiIndex(Vec<(Arc<Expression>, IndexOption)>),
SingleIndexMultiExpression(IndexRef, RangeQueryBuilder),
}
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub(crate) struct IndexOption(Arc<Inner>);
#[derive(Debug, Eq, PartialEq, Hash)]
pub(super) struct Inner {
ir: IndexRef,
id: Idiom,
op: IndexOperator,
}
#[derive(Debug, Eq, PartialEq, Hash)]
pub(super) enum IndexOperator {
Equality(Array),
RangePart(Operator, Value),
Matches(String, Option<MatchRef>),
}
impl IndexOption {
pub(super) fn new(ir: IndexRef, id: Idiom, op: IndexOperator) -> Self {
Self(Arc::new(Inner {
ir,
id,
op,
}))
}
pub(super) fn ir(&self) -> IndexRef {
self.0.ir
}
pub(super) fn op(&self) -> &IndexOperator {
&self.0.op
}
pub(super) fn id(&self) -> &Idiom {
&self.0.id
}
pub(crate) fn explain(&self, e: &mut HashMap<&str, Value>) {
match self.op() {
IndexOperator::Equality(a) => {
let v = if a.len() == 1 {
a[0].clone()
} else {
Value::Array(a.clone())
};
e.insert("operator", Value::from(Operator::Equal.to_string()));
e.insert("value", v);
}
IndexOperator::Matches(qs, a) => {
e.insert("operator", Value::from(Operator::Matches(*a).to_string()));
e.insert("value", Value::from(qs.to_owned()));
}
IndexOperator::RangePart(op, v) => {
e.insert("operator", Value::from(op.to_string()));
e.insert("value", v.to_owned());
}
};
}
}
#[derive(Debug, Default, Eq, PartialEq, Hash)]
pub(super) struct RangeValue {
pub(super) value: Value,
pub(super) inclusive: bool,
}
impl RangeValue {
fn set_to(&mut self, v: &Value) {
if self.value.is_none() {
self.value = v.clone();
return;
}
if self.value.lt(v) {
self.value = v.clone();
self.inclusive = false;
}
}
fn set_to_inclusive(&mut self, v: &Value) {
if self.value.is_none() {
self.value = v.clone();
self.inclusive = true;
return;
}
if self.inclusive {
if self.value.lt(v) {
self.value = v.clone();
}
} else if self.value.le(v) {
self.value = v.clone();
self.inclusive = true;
}
}
fn set_from(&mut self, v: &Value) {
if self.value.is_none() {
self.value = v.clone();
return;
}
if self.value.gt(v) {
self.value = v.clone();
self.inclusive = false;
}
}
fn set_from_inclusive(&mut self, v: &Value) {
if self.value.is_none() {
self.value = v.clone();
self.inclusive = true;
return;
}
if self.inclusive {
if self.value.gt(v) {
self.value = v.clone();
}
} else if self.value.ge(v) {
self.value = v.clone();
self.inclusive = true;
}
}
}
impl From<&RangeValue> for Value {
fn from(rv: &RangeValue) -> Self {
Value::from(Object::from(HashMap::from([
("value", rv.value.to_owned()),
("inclusive", Value::from(rv.inclusive)),
])))
}
}
#[derive(Default, Debug)]
pub(super) struct RangeQueryBuilder {
pub(super) exps: HashSet<Arc<Expression>>,
pub(super) from: RangeValue,
pub(super) to: RangeValue,
}
impl RangeQueryBuilder {
fn add(&mut self, exp: Arc<Expression>, op: &Operator, v: &Value) {
match op {
Operator::LessThan => self.to.set_to(v),
Operator::LessThanOrEqual => self.to.set_to_inclusive(v),
Operator::MoreThan => self.from.set_from(v),
Operator::MoreThanOrEqual => self.from.set_from_inclusive(v),
_ => return,
}
self.exps.insert(exp);
}
}
#[cfg(test)]
mod tests {
use crate::idx::planner::plan::{IndexOperator, IndexOption, RangeValue};
use crate::sql::{Array, Idiom, Value};
use std::collections::HashSet;
#[test]
fn test_hash_index_option() {
let mut set = HashSet::new();
let io1 = IndexOption::new(
1,
Idiom::from("a.b".to_string()),
IndexOperator::Equality(Array::from(vec!["test"])),
);
let io2 = IndexOption::new(
1,
Idiom::from("a.b".to_string()),
IndexOperator::Equality(Array::from(vec!["test"])),
);
set.insert(io1);
set.insert(io2.clone());
set.insert(io2);
assert_eq!(set.len(), 1);
}
#[test]
fn test_range_default_value() {
let r = RangeValue::default();
assert_eq!(r.value, Value::None);
assert_eq!(r.inclusive, false);
}
#[test]
fn test_range_value_from_inclusive() {
let mut r = RangeValue::default();
r.set_from_inclusive(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, true);
r.set_from_inclusive(&10.into());
assert_eq!(r.value, 10.into());
assert_eq!(r.inclusive, true);
r.set_from_inclusive(&20.into());
assert_eq!(r.value, 10.into());
assert_eq!(r.inclusive, true);
}
#[test]
fn test_range_value_from() {
let mut r = RangeValue::default();
r.set_from(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, false);
r.set_from(&10.into());
assert_eq!(r.value, 10.into());
assert_eq!(r.inclusive, false);
r.set_from(&20.into());
assert_eq!(r.value, 10.into());
assert_eq!(r.inclusive, false);
}
#[test]
fn test_range_value_to_inclusive() {
let mut r = RangeValue::default();
r.set_to_inclusive(&10.into());
assert_eq!(r.value, 10.into());
assert_eq!(r.inclusive, true);
r.set_to_inclusive(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, true);
r.set_to_inclusive(&10.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, true);
}
#[test]
fn test_range_value_to() {
let mut r = RangeValue::default();
r.set_to(&10.into());
assert_eq!(r.value, 10.into());
assert_eq!(r.inclusive, false);
r.set_to(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, false);
r.set_to(&10.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, false);
}
#[test]
fn test_range_value_to_switch_inclusive() {
let mut r = RangeValue::default();
r.set_to(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, false);
r.set_to_inclusive(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, true);
r.set_to(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, true);
}
#[test]
fn test_range_value_from_switch_inclusive() {
let mut r = RangeValue::default();
r.set_from(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, false);
r.set_from_inclusive(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, true);
r.set_from(&20.into());
assert_eq!(r.value, 20.into());
assert_eq!(r.inclusive, true);
}
}