surrealpatch/lib/src/idx/planner/tree.rs

379 lines
9.7 KiB
Rust

use crate::ctx::Context;
use crate::dbs::{Options, Transaction};
use crate::err::Error;
use crate::idx::planner::plan::{IndexOperator, IndexOption};
use crate::sql::index::Index;
use crate::sql::statements::DefineIndexStatement;
use crate::sql::{Array, Cond, Expression, Idiom, Operator, Part, Subquery, Table, Value, With};
use async_recursion::async_recursion;
use std::collections::HashMap;
use std::sync::Arc;
pub(super) struct Tree {}
impl Tree {
/// Traverse all the conditions and extract every expression
/// that can be resolved by an index.
pub(super) async fn build<'a>(
ctx: &'a Context<'_>,
opt: &'a Options,
txn: &'a Transaction,
table: &'a Table,
cond: &'a Option<Cond>,
with: &'a Option<With>,
) -> Result<Option<(Node, IndexesMap, Vec<IndexRef>)>, Error> {
let mut b = TreeBuilder::new(ctx, opt, txn, table, with);
if let Some(cond) = cond {
let node = b.eval_value(&cond.0).await?;
Ok(Some((node, b.index_map, b.with_indexes)))
} else {
Ok(None)
}
}
}
struct TreeBuilder<'a> {
ctx: &'a Context<'a>,
opt: &'a Options,
txn: &'a Transaction,
table: &'a Table,
with: &'a Option<With>,
indexes: Option<Arc<[DefineIndexStatement]>>,
resolved_expressions: HashMap<Arc<Expression>, ResolvedExpression>,
resolved_idioms: HashMap<Arc<Idiom>, Arc<Idiom>>,
idioms_indexes: HashMap<Arc<Idiom>, Option<Arc<Vec<IndexRef>>>>,
index_map: IndexesMap,
with_indexes: Vec<IndexRef>,
}
impl<'a> TreeBuilder<'a> {
fn new(
ctx: &'a Context<'_>,
opt: &'a Options,
txn: &'a Transaction,
table: &'a Table,
with: &'a Option<With>,
) -> Self {
let with_indexes = match with {
Some(With::Index(ixs)) => Vec::with_capacity(ixs.len()),
_ => vec![],
};
Self {
ctx,
opt,
txn,
table,
with,
indexes: None,
resolved_expressions: Default::default(),
resolved_idioms: Default::default(),
idioms_indexes: Default::default(),
index_map: Default::default(),
with_indexes,
}
}
async fn lazy_cache_indexes(&mut self) -> Result<(), Error> {
if self.indexes.is_none() {
let indexes = self
.txn
.clone()
.lock()
.await
.all_tb_indexes(self.opt.ns(), self.opt.db(), &self.table.0)
.await?;
self.indexes = Some(indexes);
}
Ok(())
}
#[cfg_attr(not(target_arch = "wasm32"), async_recursion)]
#[cfg_attr(target_arch = "wasm32", async_recursion(?Send))]
async fn eval_value(&mut self, v: &Value) -> Result<Node, Error> {
match v {
Value::Expression(e) => self.eval_expression(e).await,
Value::Idiom(i) => self.eval_idiom(i).await,
Value::Strand(_) | Value::Number(_) | Value::Bool(_) | Value::Thing(_) => {
Ok(Node::Computed(v.to_owned()))
}
Value::Array(a) => self.eval_array(a).await,
Value::Subquery(s) => self.eval_subquery(s).await,
Value::Param(p) => {
let v = p.compute(self.ctx, self.opt, self.txn, None).await?;
self.eval_value(&v).await
}
_ => Ok(Node::Unsupported(format!("Unsupported value: {}", v))),
}
}
async fn eval_array(&mut self, a: &Array) -> Result<Node, Error> {
let mut values = Vec::with_capacity(a.len());
for v in &a.0 {
values.push(v.compute(self.ctx, self.opt, self.txn, None).await?);
}
Ok(Node::Computed(Value::Array(Array::from(values))))
}
async fn eval_idiom(&mut self, i: &Idiom) -> Result<Node, Error> {
let mut res = Node::NonIndexedField;
// Check if the idiom has already been resolved
if let Some(i) = self.resolved_idioms.get(i) {
if let Some(Some(irs)) = self.idioms_indexes.get(i).cloned() {
return Ok(Node::IndexedField(i.clone(), irs));
}
return Ok(res);
};
// Compute the idiom value if it is a param
if let Some(Part::Start(x)) = i.0.first() {
if x.is_param() {
let v = i.compute(self.ctx, self.opt, self.txn, None).await?;
return self.eval_value(&v).await;
}
}
self.lazy_cache_indexes().await?;
let i = Arc::new(i.clone());
self.resolved_idioms.insert(i.clone(), i.clone());
// Try to detect if it matches an index
if let Some(irs) = self.resolve_indexes(&i) {
res = Node::IndexedField(i.clone(), irs);
}
Ok(res)
}
fn resolve_indexes(&mut self, i: &Arc<Idiom>) -> Option<Arc<Vec<IndexRef>>> {
let mut res = None;
if let Some(indexes) = &self.indexes {
let mut irs = Vec::new();
for ix in indexes.as_ref() {
if ix.cols.len() == 1 && ix.cols[0].eq(i) {
let ixr = self.index_map.definitions.len() as IndexRef;
if let Some(With::Index(ixs)) = self.with {
if ixs.contains(&ix.name.0) {
self.with_indexes.push(ixr);
}
}
self.index_map.definitions.push(ix.clone());
irs.push(ixr);
}
}
if !irs.is_empty() {
res = Some(Arc::new(irs));
}
}
self.idioms_indexes.insert(i.clone(), res.clone());
res
}
async fn eval_expression(&mut self, e: &Expression) -> Result<Node, Error> {
match e {
Expression::Unary {
..
} => Ok(Node::Unsupported("unary expressions not supported".to_string())),
Expression::Binary {
l,
o,
r,
} => {
// Did we already compute the same expression?
if let Some(re) = self.resolved_expressions.get(e).cloned() {
return Ok(re.into());
}
let left = Arc::new(self.eval_value(l).await?);
let right = Arc::new(self.eval_value(r).await?);
let mut io = None;
if let Some((id, irs)) = left.is_indexed_field() {
io = self.lookup_index_option(
irs.as_slice(),
o,
id,
&right,
e,
IdiomPosition::Left,
);
} else if let Some((id, irs)) = right.is_indexed_field() {
io = self.lookup_index_option(
irs.as_slice(),
o,
id,
&left,
e,
IdiomPosition::Right,
);
};
let exp = Arc::new(e.clone());
let re = ResolvedExpression {
exp: exp.clone(),
io: io.clone(),
left: left.clone(),
right: right.clone(),
};
self.resolved_expressions.insert(exp.clone(), re.clone());
Ok(re.into())
}
}
}
fn lookup_index_option(
&mut self,
irs: &[IndexRef],
op: &Operator,
id: Arc<Idiom>,
n: &Node,
e: &Expression,
p: IdiomPosition,
) -> Option<IndexOption> {
for ir in irs {
if let Some(ix) = self.index_map.definitions.get(*ir as usize) {
let op = match &ix.index {
Index::Idx => Self::eval_index_operator(op, n, p),
Index::Uniq => Self::eval_index_operator(op, n, p),
Index::Search {
..
} => Self::eval_matches_operator(op, n),
Index::MTree(_) => Self::eval_knn_operator(op, n),
};
if let Some(op) = op {
let io = IndexOption::new(*ir, id, op);
self.index_map.options.push((Arc::new(e.clone()), io.clone()));
return Some(io);
}
}
}
None
}
fn eval_matches_operator(op: &Operator, n: &Node) -> Option<IndexOperator> {
if let Some(v) = n.is_computed() {
if let Operator::Matches(mr) = op {
return Some(IndexOperator::Matches(v.clone().to_raw_string(), *mr));
}
}
None
}
fn eval_knn_operator(op: &Operator, n: &Node) -> Option<IndexOperator> {
if let Operator::Knn(k) = op {
if let Node::Computed(Value::Array(a)) = n {
return Some(IndexOperator::Knn(a.clone(), *k));
}
}
None
}
fn eval_index_operator(op: &Operator, n: &Node, p: IdiomPosition) -> Option<IndexOperator> {
if let Some(v) = n.is_computed() {
match (op, v, p) {
(Operator::Equal, v, _) => Some(IndexOperator::Equality(v.clone())),
(Operator::Contain, v, IdiomPosition::Left) => {
Some(IndexOperator::Equality(v.clone()))
}
(Operator::ContainAny, Value::Array(a), IdiomPosition::Left) => {
Some(IndexOperator::Union(a.clone()))
}
(Operator::ContainAll, Value::Array(a), IdiomPosition::Left) => {
Some(IndexOperator::Union(a.clone()))
}
(
Operator::LessThan
| Operator::LessThanOrEqual
| Operator::MoreThan
| Operator::MoreThanOrEqual,
v,
p,
) => Some(IndexOperator::RangePart(p.transform(op), v.clone())),
_ => None,
}
} else {
None
}
}
async fn eval_subquery(&mut self, s: &Subquery) -> Result<Node, Error> {
match s {
Subquery::Value(v) => self.eval_value(v).await,
_ => Ok(Node::Unsupported(format!("Unsupported subquery: {}", s))),
}
}
}
pub(super) type IndexRef = u16;
/// For each expression a possible index option
#[derive(Default)]
pub(super) struct IndexesMap {
pub(super) options: Vec<(Arc<Expression>, IndexOption)>,
pub(super) definitions: Vec<DefineIndexStatement>,
}
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub(super) enum Node {
Expression {
io: Option<IndexOption>,
left: Arc<Node>,
right: Arc<Node>,
exp: Arc<Expression>,
},
IndexedField(Arc<Idiom>, Arc<Vec<IndexRef>>),
NonIndexedField,
Computed(Value),
Unsupported(String),
}
impl Node {
pub(super) fn is_computed(&self) -> Option<&Value> {
if let Node::Computed(v) = self {
Some(v)
} else {
None
}
}
pub(super) fn is_indexed_field(&self) -> Option<(Arc<Idiom>, Arc<Vec<IndexRef>>)> {
if let Node::IndexedField(id, irs) = self {
Some((id.clone(), irs.clone()))
} else {
None
}
}
}
#[derive(Clone, Copy)]
enum IdiomPosition {
Left,
Right,
}
impl IdiomPosition {
// Reverses the operator for non commutative operators
fn transform(&self, op: &Operator) -> Operator {
match self {
IdiomPosition::Left => op.clone(),
IdiomPosition::Right => match op {
Operator::LessThan => Operator::MoreThan,
Operator::LessThanOrEqual => Operator::MoreThanOrEqual,
Operator::MoreThan => Operator::LessThan,
Operator::MoreThanOrEqual => Operator::LessThanOrEqual,
_ => op.clone(),
},
}
}
}
#[derive(Clone)]
struct ResolvedExpression {
exp: Arc<Expression>,
io: Option<IndexOption>,
left: Arc<Node>,
right: Arc<Node>,
}
impl From<ResolvedExpression> for Node {
fn from(re: ResolvedExpression) -> Self {
Node::Expression {
io: re.io,
left: re.left,
right: re.right,
exp: re.exp,
}
}
}