surrealpatch/core/src/sql/array.rs
2024-04-18 15:51:47 +00:00

492 lines
11 KiB
Rust

use crate::ctx::Context;
use crate::dbs::{Options, Transaction};
use crate::doc::CursorDoc;
use crate::err::Error;
use crate::sql::{
fmt::{pretty_indent, Fmt, Pretty},
Number, Operation, Value,
};
use reblessive::tree::Stk;
use revision::revisioned;
use serde::{Deserialize, Serialize};
use std::collections::HashSet;
use std::fmt::{self, Display, Formatter, Write};
use std::ops;
use std::ops::Deref;
use std::ops::DerefMut;
pub(crate) const TOKEN: &str = "$surrealdb::private::sql::Array";
#[revisioned(revision = 1)]
#[derive(Clone, Debug, Default, Eq, Ord, PartialEq, PartialOrd, Serialize, Deserialize, Hash)]
#[serde(rename = "$surrealdb::private::sql::Array")]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[non_exhaustive]
pub struct Array(pub Vec<Value>);
impl From<Value> for Array {
fn from(v: Value) -> Self {
vec![v].into()
}
}
impl From<Vec<Value>> for Array {
fn from(v: Vec<Value>) -> Self {
Self(v)
}
}
impl From<Vec<i32>> for Array {
fn from(v: Vec<i32>) -> Self {
Self(v.into_iter().map(Value::from).collect())
}
}
impl From<Vec<f64>> for Array {
fn from(v: Vec<f64>) -> Self {
Self(v.into_iter().map(Value::from).collect())
}
}
impl From<Vec<&str>> for Array {
fn from(v: Vec<&str>) -> Self {
Self(v.into_iter().map(Value::from).collect())
}
}
impl From<Vec<String>> for Array {
fn from(v: Vec<String>) -> Self {
Self(v.into_iter().map(Value::from).collect())
}
}
impl From<Vec<Number>> for Array {
fn from(v: Vec<Number>) -> Self {
Self(v.into_iter().map(Value::from).collect())
}
}
impl From<Vec<Operation>> for Array {
fn from(v: Vec<Operation>) -> Self {
Self(v.into_iter().map(Value::from).collect())
}
}
impl From<Vec<bool>> for Array {
fn from(v: Vec<bool>) -> Self {
Self(v.into_iter().map(Value::from).collect())
}
}
impl From<Array> for Vec<Value> {
fn from(s: Array) -> Self {
s.0
}
}
impl FromIterator<Value> for Array {
fn from_iter<I: IntoIterator<Item = Value>>(iter: I) -> Self {
Array(iter.into_iter().collect())
}
}
impl Deref for Array {
type Target = Vec<Value>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Array {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl IntoIterator for Array {
type Item = Value;
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl Array {
// Create a new empty array
pub fn new() -> Self {
Self::default()
}
// Create a new array with capacity
pub fn with_capacity(len: usize) -> Self {
Self(Vec::with_capacity(len))
}
// Get the length of the array
pub fn len(&self) -> usize {
self.0.len()
}
// Check if there array is empty
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
}
impl Array {
/// Process this type returning a computed simple Value
pub(crate) async fn compute(
&self,
stk: &mut Stk,
ctx: &Context<'_>,
opt: &Options,
txn: &Transaction,
doc: Option<&CursorDoc<'_>>,
) -> Result<Value, Error> {
let mut x = Self::with_capacity(self.len());
for v in self.iter() {
match v.compute(stk, ctx, opt, txn, doc).await {
Ok(v) => x.push(v),
Err(e) => return Err(e),
};
}
Ok(Value::Array(x))
}
pub(crate) fn is_all_none_or_null(&self) -> bool {
self.0.iter().all(|v| v.is_none_or_null())
}
pub(crate) fn is_static(&self) -> bool {
self.iter().all(Value::is_static)
}
}
impl Display for Array {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
let mut f = Pretty::from(f);
f.write_char('[')?;
if !self.is_empty() {
let indent = pretty_indent();
write!(f, "{}", Fmt::pretty_comma_separated(self.as_slice()))?;
drop(indent);
}
f.write_char(']')
}
}
// ------------------------------
impl ops::Add<Value> for Array {
type Output = Self;
fn add(mut self, other: Value) -> Self {
self.0.push(other);
self
}
}
impl ops::Add for Array {
type Output = Self;
fn add(mut self, mut other: Self) -> Self {
self.0.append(&mut other.0);
self
}
}
// ------------------------------
impl ops::Sub<Value> for Array {
type Output = Self;
fn sub(mut self, other: Value) -> Self {
if let Some(p) = self.0.iter().position(|x| *x == other) {
self.0.remove(p);
}
self
}
}
impl ops::Sub for Array {
type Output = Self;
fn sub(mut self, other: Self) -> Self {
for v in other.0 {
if let Some(p) = self.0.iter().position(|x| *x == v) {
self.0.remove(p);
}
}
self
}
}
// ------------------------------
pub trait Abolish<T> {
fn abolish<F>(&mut self, f: F)
where
F: FnMut(usize) -> bool;
}
impl<T> Abolish<T> for Vec<T> {
fn abolish<F>(&mut self, mut f: F)
where
F: FnMut(usize) -> bool,
{
let mut i = 0;
// FIXME: use drain_filter once stabilized (https://github.com/rust-lang/rust/issues/43244)
// to avoid negation of the predicate return value.
self.retain(|_| {
let retain = !f(i);
i += 1;
retain
});
}
}
// ------------------------------
pub(crate) trait Clump<T> {
fn clump(self, clump_size: usize) -> T;
}
impl Clump<Array> for Array {
fn clump(self, clump_size: usize) -> Array {
self.0
.chunks(clump_size)
.map::<Value, _>(|chunk| chunk.to_vec().into())
.collect::<Vec<_>>()
.into()
}
}
// ------------------------------
pub(crate) trait Combine<T> {
fn combine(self, other: T) -> T;
}
impl Combine<Array> for Array {
fn combine(self, other: Self) -> Array {
let mut out = Self::with_capacity(self.len().saturating_mul(other.len()));
for a in self.iter() {
for b in other.iter() {
out.push(vec![a.clone(), b.clone()].into());
}
}
out
}
}
// ------------------------------
pub(crate) trait Complement<T> {
fn complement(self, other: T) -> T;
}
impl Complement<Array> for Array {
fn complement(self, other: Self) -> Array {
let mut out = Array::new();
for v in self.into_iter() {
if !other.contains(&v) {
out.push(v)
}
}
out
}
}
// ------------------------------
#[allow(dead_code)]
pub(crate) trait Concat<T> {
fn concat(self, other: T) -> T;
}
impl Concat<Array> for Array {
fn concat(mut self, mut other: Array) -> Array {
self.append(&mut other);
self
}
}
impl Concat<String> for String {
fn concat(self, other: String) -> String {
self + &other
}
}
// ------------------------------
pub(crate) trait Difference<T> {
fn difference(self, other: T) -> T;
}
impl Difference<Array> for Array {
fn difference(self, mut other: Array) -> Array {
let mut out = Array::new();
for v in self.into_iter() {
if let Some(pos) = other.iter().position(|w| v == *w) {
other.remove(pos);
} else {
out.push(v);
}
}
out.append(&mut other);
out
}
}
// ------------------------------
pub(crate) trait Flatten<T> {
fn flatten(self) -> T;
}
impl Flatten<Array> for Array {
fn flatten(self) -> Array {
let mut out = Array::new();
for v in self.into_iter() {
match v {
Value::Array(mut a) => out.append(&mut a),
_ => out.push(v),
}
}
out
}
}
// ------------------------------
pub(crate) trait Intersect<T> {
fn intersect(self, other: T) -> T;
}
impl Intersect<Self> for Array {
fn intersect(self, mut other: Self) -> Self {
let mut out = Self::new();
for v in self.0.into_iter() {
if let Some(pos) = other.iter().position(|w| v == *w) {
other.remove(pos);
out.push(v);
}
}
out
}
}
// ------------------------------
// Documented with the assumption that it is just for arrays.
pub(crate) trait Matches<T> {
/// Returns an array complimenting the original where each value is true or false
/// depending on whether it is == to the compared value.
///
/// Admittedly, this is most often going to be used in `count(array::matches($arr, $val))`
/// to count the number of times an element appears in an array but it's nice to have
/// this in addition.
fn matches(self, compare_val: Value) -> T;
}
impl Matches<Array> for Array {
fn matches(self, compare_val: Value) -> Array {
self.iter().map(|arr_val| (arr_val == &compare_val).into()).collect::<Vec<Value>>().into()
}
}
// ------------------------------
// Documented with the assumption that it is just for arrays.
pub(crate) trait Transpose<T> {
/// Stacks arrays on top of each other. This can serve as 2d array transposition.
///
/// The input array can contain regular values which are treated as arrays with
/// a single element.
///
/// It's best to think of the function as creating a layered structure of the arrays
/// rather than transposing them when the input is not a 2d array. See the examples
/// for what happense when the input arrays are not all the same size.
///
/// Here's a diagram:
/// [0, 1, 2, 3], [4, 5, 6]
/// ->
/// [0 | 1 | 2 | 3]
/// [4 | 5 | 6 ]
/// ^ ^ ^ ^
/// [0, 4] [1, 5] [2, 6] [3]
///
/// # Examples
///
/// ```ignore
/// fn array(sql: &str) -> Array {
/// unimplemented!();
/// }
///
/// // Example of `transpose` doing what it says on the tin.
/// assert_eq!(array("[[0, 1], [2, 3]]").transpose(), array("[[0, 2], [1, 3]]"));
/// // `transpose` can be thought of layering arrays on top of each other so when
/// // one array runs out, it stops appearing in the output.
/// assert_eq!(array("[[0, 1], [2]]").transpose(), array("[[0, 2], [1]]"));
/// assert_eq!(array("[0, 1, 2]").transpose(), array("[[0, 1, 2]]"));
/// ```
fn transpose(self) -> T;
}
impl Transpose<Array> for Array {
fn transpose(self) -> Array {
if self.is_empty() {
return self;
}
// I'm sure there's a way more efficient way to do this that I don't know about.
// The new array will be at *least* this large so we can start there;
let mut transposed_vec = Vec::<Value>::with_capacity(self.len());
let mut iters = self
.iter()
.map(|v| {
if let Value::Array(arr) = v {
Box::new(arr.iter().cloned()) as Box<dyn ExactSizeIterator<Item = Value>>
} else {
Box::new(std::iter::once(v).cloned())
as Box<dyn ExactSizeIterator<Item = Value>>
}
})
.collect::<Vec<_>>();
// We know there is at least one element in the array therefore iters is not empty.
// This is safe.
let longest_length = iters.iter().map(|i| i.len()).max().unwrap();
for _ in 0..longest_length {
transposed_vec
.push(iters.iter_mut().filter_map(|i| i.next()).collect::<Vec<_>>().into());
}
transposed_vec.into()
}
}
// ------------------------------
pub(crate) trait Union<T> {
fn union(self, other: T) -> T;
}
impl Union<Self> for Array {
fn union(mut self, mut other: Self) -> Array {
self.append(&mut other);
self.uniq()
}
}
// ------------------------------
pub(crate) trait Uniq<T> {
fn uniq(self) -> T;
}
impl Uniq<Array> for Array {
fn uniq(mut self) -> Array {
let mut set: HashSet<&Value> = HashSet::new();
let mut to_remove: Vec<usize> = Vec::new();
for (i, item) in self.iter().enumerate() {
if !set.insert(item) {
to_remove.push(i);
}
}
for i in to_remove.iter().rev() {
self.remove(*i);
}
self
}
}