surrealpatch/sql/exprs.go
Tobie Morgan Hitchcock 8ab01b510f Remove unused code
2018-05-30 13:25:53 +01:00

977 lines
18 KiB
Go

// Copyright © 2016 Abcum Ltd
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package sql
import (
"fmt"
"sort"
"time"
"golang.org/x/text/language"
)
func (p *parser) parseWhat() (mul []Expr, err error) {
for {
exp, err := p.parsePart()
if err != nil {
return nil, err
}
mul = append(mul, exp)
// Check to see if the next token is a comma
// and if not, then break out of the loop,
// otherwise repeat until we find no comma.
if _, _, exi := p.mightBe(COMMA); !exi {
break
}
}
return
}
func (p *parser) parseIdent() (*Ident, error) {
_, lit, err := p.shouldBe(IDENT)
if err != nil {
return nil, &ParseError{Found: lit, Expected: []string{"name"}}
}
val, err := p.declare(IDENT, lit)
return val.(*Ident), err
}
func (p *parser) parseIdents() (mul Idents, err error) {
for {
one, err := p.parseIdent()
if err != nil {
return nil, err
}
mul = append(mul, one)
if _, _, exi := p.mightBe(COMMA); !exi {
break
}
}
return
}
func (p *parser) parseTable() (*Table, error) {
_, lit, err := p.shouldBe(IDENT)
if err != nil {
return nil, &ParseError{Found: lit, Expected: []string{"table"}}
}
val, err := p.declare(TABLE, lit)
return val.(*Table), err
}
func (p *parser) parseTables() (mul Tables, err error) {
for {
one, err := p.parseTable()
if err != nil {
return nil, err
}
mul = append(mul, one)
if _, _, exi := p.mightBe(COMMA); !exi {
break
}
}
return
}
func (p *parser) parseIdiom() (*Ident, error) {
_, lit, err := p.shouldBe(IDENT, EXPR)
if err != nil {
return nil, &ParseError{Found: lit, Expected: []string{"name, or expression"}}
}
val, err := p.declare(IDENT, lit)
return val.(*Ident), err
}
func (p *parser) parseIdioms() (mul Idents, err error) {
for {
one, err := p.parseIdiom()
if err != nil {
return nil, err
}
mul = append(mul, one)
if _, _, exi := p.mightBe(COMMA); !exi {
break
}
}
return
}
// --------------------------------------------------
//
// --------------------------------------------------
func (p *parser) parseCond() (exp Expr, err error) {
// The next token that we expect to see is a
// WHERE token, and if we don't find one then
// return nil, with no error.
if _, _, exi := p.mightBe(WHERE); !exi {
return nil, nil
}
return p.parseExpr()
}
// --------------------------------------------------
//
// --------------------------------------------------
func (p *parser) parseBinary() ([]byte, error) {
_, lit, err := p.shouldBe(STRING, REGION)
if err != nil {
return nil, &ParseError{Found: lit, Expected: []string{"string"}}
}
return []byte(lit), err
}
func (p *parser) parseTimeout() (time.Duration, error) {
if _, _, exi := p.mightBe(TIMEOUT); !exi {
return 0, nil
}
return p.parseDuration()
}
func (p *parser) parseDuration() (time.Duration, error) {
tok, lit, err := p.shouldBe(DURATION)
if err != nil {
return 0, &ParseError{Found: lit, Expected: []string{"duration"}}
}
val, err := p.declare(tok, lit)
return val.(time.Duration), err
}
func (p *parser) parsePriority() (float64, error) {
tok, lit, err := p.shouldBe(NUMBER)
if err != nil {
return 0, &ParseError{Found: lit, Expected: []string{"number"}}
}
val, err := p.declare(tok, lit)
return val.(float64), err
}
func (p *parser) parseType() (t, k string, err error) {
_, t, err = p.shouldBe(IDENT, STRING, PASSWORD)
if err != nil {
err = &ParseError{Found: t, Expected: allowedTypes}
return
}
if !contains(t, allowedTypes) {
err = &ParseError{Found: t, Expected: allowedTypes}
return
}
if t == "record" {
if _, _, exi := p.mightBe(LPAREN); exi {
if _, k, err = p.shouldBe(IDENT); err != nil {
return
}
if _, _, err = p.shouldBe(RPAREN); err != nil {
return
}
}
}
return
}
func (p *parser) parseLanguage() (language.Tag, error) {
_, lit, err := p.shouldBe(IDENT, STRING)
if err != nil {
return language.English, &ParseError{Found: lit, Expected: []string{"string"}}
}
tag, err := language.Parse(lit)
if err != nil {
return language.English, &ParseError{Found: lit, Expected: []string{"BCP47 language"}}
}
if _, _, exi := p.mightBe(NUMERIC); exi {
tag, _ = tag.SetTypeForKey("kn", "true")
}
return tag, err
}
func (p *parser) parseAlgorithm() (string, error) {
_, lit, err := p.shouldBe(IDENT, STRING)
if err != nil {
return string(""), &ParseError{Found: lit, Expected: allowedAlgorithms}
}
switch lit {
case
"ES256", "ES384", "ES512",
"HS256", "HS384", "HS512",
"PS256", "PS384", "PS512",
"RS256", "RS384", "RS512":
default:
return string(""), &ParseError{Found: lit, Expected: allowedAlgorithms}
}
return lit, err
}
func (p *parser) parseExpr() (exp Expr, err error) {
// Create the root binary expression tree.
root := &BinaryExpression{}
// If the primary token is an in, out, or
// multi way path expression, then follow
// the path through to the end.
if tok, _, exi := p.mightBe(OEDGE, IEDGE, BEDGE); exi {
root.RHS, err = p.parsePath(tok)
if err != nil {
return nil, err
}
} else {
// Otherwise begin with parsing the first
// expression, as the root of the tree.
root.RHS, err = p.parsePart()
if err != nil {
return nil, err
}
// But if the subsequent token is an in, out,
// or multi way path expression, then follow
// the path through to the end.
if tok, _, exi := p.mightBe(DOT, OEDGE, IEDGE, BEDGE); exi {
root.RHS, err = p.parsePath(root.RHS, tok)
if err != nil {
return nil, err
}
}
}
// Loop over the operations and expressions
// and build a binary expression tree based
// on the precedence of the operators.
for {
var rhs Expr
// Get the next token from the scanner and
// the literal value that it is scanned as.
tok, lit, _ := p.scan()
switch tok {
// If the token is an AND or OR expression
// then skip to the next expression without
// further checks.
case AND, OR:
// If the token is not an operator but can
// be converted into an operator based on
// logic, then convert it to an operator.
case IN:
tok = INS
if _, _, exi := p.mightBe(NOT); exi {
tok = NIS
}
case CONTAINS:
tok = SIN
if _, _, exi := p.mightBe(NOT); exi {
tok = SNI
}
case IS:
tok = EQ
if _, _, exi := p.mightBe(NOT); exi {
tok = NEQ
}
if _, _, exi := p.mightBe(IN); exi {
switch tok {
case EQ:
tok = INS
case NEQ:
tok = NIS
}
}
// If the token is a keyword which is also
// actually an operator, then skip to the
// next expression without further checks.
case CONTAINSALL, CONTAINSNONE, CONTAINSSOME:
case ALLCONTAINEDIN, NONECONTAINEDIN, SOMECONTAINEDIN:
// If the token is an int64 or a float64 then
// check to see whether the first rune is a
// + or a - and use it as a token instead.
case NUMBER, DOUBLE:
switch lit[0] {
case '-':
rhs, err = p.declare(tok, lit[1:])
tok = SUB
case '+':
rhs, err = p.declare(tok, lit[1:])
tok = ADD
default:
p.unscan()
return root.RHS, nil
}
// Check to see if the token is an operator
// expression. If it is none of those then
// unscan and break out of the loop.
default:
if !tok.isOperator() {
p.unscan()
return root.RHS, nil
}
}
// If the token was not an int64 or float64
// signed value then retrieve the next part
// of the expression and add it to the right.
if rhs == nil {
rhs, err = p.parseExpr()
if err != nil {
return nil, err
}
}
// Find the right place in the tree to add the
// new expression, by descending the right side
// of the tree until we reach the last binary
// expression, or until we reach an expression
// whose operator precendence >= this precedence.
for node := root; ; {
if r, ok := rhs.(*BinaryExpression); ok {
if r.Op.precedence() < tok.precedence() {
r.LHS = &BinaryExpression{
LHS: root.RHS,
Op: tok,
RHS: r.LHS,
}
node.RHS = rhs
break
}
}
r, ok := node.RHS.(*BinaryExpression)
if !ok || r.Op.precedence() <= tok.precedence() {
node.RHS = &BinaryExpression{
LHS: node.RHS,
Op: tok,
RHS: rhs,
}
break
}
node = r
}
}
return nil, nil
}
func (p *parser) parsePart() (exp Expr, err error) {
toks := []Token{
MUL, EXPR, IDENT, THING, MODEL,
NULL, VOID, EMPTY, MISSING,
TRUE, FALSE, STRING, REGION, NUMBER, DOUBLE, REGEX,
DATE, TIME, DURATION, JSON, ARRAY, PARAM, LPAREN, IF,
}
tok, lit, _ := p.scan()
// We need to declare the type up here instead
// of at the bottom, as the held value might
// be overwritten by the next token scan.
exp, err = p.declare(tok, lit)
if err != nil {
return nil, err
}
// If the current token is a IF word clause
// then we will parse anything from here on
// as an IF expression clause.
if is(tok, IF) {
return p.parseIfel()
}
// If the current token is a left parenthesis
// bracket, then we will parse this complete
// expression part as a subquery.
if is(tok, LPAREN) {
return p.parseSubq()
}
// If the next token is a left parenthesis
// bracket, then we will parse this complete
// expression part as a function call.
if _, _, exi := p.mightBe(LPAREN); exi {
return p.parseCall(lit)
}
// If this expression is not a subquery or a
// function call, then check to see if the
// token is in the list of allowed tokens.
if !in(tok, toks) {
err = &ParseError{Found: lit, Expected: []string{"expression"}}
}
return
}
func (p *parser) parseSubq() (exp *SubExpression, err error) {
exp = &SubExpression{}
tok, _, _ := p.mightBe(SELECT, CREATE, UPDATE, DELETE, RELATE, INSERT, UPSERT)
switch tok {
case SELECT:
exp.Expr, err = p.parseSelectStatement()
case CREATE:
p.buf.rw = true
exp.Expr, err = p.parseCreateStatement()
case UPDATE:
p.buf.rw = true
exp.Expr, err = p.parseUpdateStatement()
case DELETE:
p.buf.rw = true
exp.Expr, err = p.parseDeleteStatement()
case RELATE:
p.buf.rw = true
exp.Expr, err = p.parseRelateStatement()
case INSERT:
p.buf.rw = true
exp.Expr, err = p.parseInsertStatement()
case UPSERT:
p.buf.rw = true
exp.Expr, err = p.parseUpsertStatement()
default:
exp.Expr, err = p.parseExpr()
}
if err != nil {
return nil, err
}
_, _, err = p.shouldBe(RPAREN)
return
}
func (p *parser) parseMult() (exp *MultExpression, err error) {
exp = &MultExpression{}
if _, _, err = p.shouldBe(LPAREN); err != nil {
return nil, err
}
for {
var stm Expr
tok, _, _ := p.mightBe(IF, RUN, CREATE, UPDATE, DELETE, RELATE, INSERT, UPSERT)
switch tok {
case IF:
stm, err = p.parseIfel()
case RUN:
stm, err = p.parseRunStatement()
case CREATE:
p.buf.rw = true
stm, err = p.parseCreateStatement()
case UPDATE:
p.buf.rw = true
stm, err = p.parseUpdateStatement()
case DELETE:
p.buf.rw = true
stm, err = p.parseDeleteStatement()
case RELATE:
p.buf.rw = true
stm, err = p.parseRelateStatement()
case INSERT:
p.buf.rw = true
stm, err = p.parseInsertStatement()
case UPSERT:
p.buf.rw = true
stm, err = p.parseUpsertStatement()
}
exp.Expr = append(exp.Expr, stm)
if _, _, exi := p.mightBe(SEMICOLON); !exi {
break
}
}
if _, _, err = p.shouldBe(RPAREN); err != nil {
return nil, err
}
return
}
func (p *parser) parseIfel() (exp *IfelExpression, err error) {
exp = &IfelExpression{}
for {
var tok Token
if cond, err := p.parseExpr(); err != nil {
return nil, err
} else {
exp.Cond = append(exp.Cond, cond)
}
if _, _, err = p.shouldBe(THEN); err != nil {
return nil, err
}
if then, err := p.parseExpr(); err != nil {
return nil, err
} else {
exp.Then = append(exp.Then, then)
}
// Check to see if the next token is an
// ELSE keyword and if it is then check to
// see if there is another if statement.
if tok, _, err = p.shouldBe(ELSE, END); err != nil {
return nil, err
}
if tok == END {
return
}
if tok == ELSE {
if _, _, exi := p.mightBe(IF); !exi {
break
}
}
}
if then, err := p.parseExpr(); err != nil {
return nil, err
} else {
exp.Else = then
}
if _, _, err = p.shouldBe(END); err != nil {
return nil, err
}
return
}
func (p *parser) parseCall(name string) (fnc *FuncExpression, err error) {
fnc = &FuncExpression{Name: name}
// Check to see if this is an aggregate
// function, and if it is then mark it,
// so we can process it correcyly in the
// 'iterator' and 'document' layers.
if _, ok := aggrs[name]; ok {
fnc.Aggr = true
}
// Check to see if the immediate token
// is a right parenthesis bracket, and if
// it is then this function has no args.
if _, _, exi := p.mightBe(RPAREN); !exi {
for {
var arg Expr
arg, err = p.parseExpr()
if err != nil {
return nil, err
}
// Append the single expression to the array
// of function argument expressions.
fnc.Args = append(fnc.Args, arg)
// Check to see if the next token is a comma
// and if not, then break out of the loop,
// otherwise repeat until we find no comma.
if _, _, exi := p.mightBe(COMMA); !exi {
break
}
}
_, _, err = p.shouldBe(RPAREN)
}
// Check to see if the used function name is
// valid according to the currently supported
// functions. If not then return an error.
if _, ok := funcs[fnc.Name]; !ok {
return nil, &ParseError{
Found: fmt.Sprintf("%s()", name),
Expected: []string{"valid function name"},
}
}
// Check to see if this function is allowed to
// have an undefined number of arguments, and
// if it is then skip argument checking.
if _, ok := funcs[fnc.Name][-1]; ok {
return
}
// Check to see if the number of arguments
// is correct for the specified function name,
// and if not, then return an error.
if _, ok := funcs[fnc.Name][len(fnc.Args)]; !ok {
s, a, t := "", []int{}, len(funcs[fnc.Name])
for i := range funcs[fnc.Name] {
a = append(a, i)
}
sort.Ints(a)
for i := 0; i < t; i++ {
switch {
case i > 0 && i == t-1:
s = s + " or "
case i > 0:
s = s + ", "
}
s = s + fmt.Sprintf("%d", a[i])
}
switch t {
case 1:
s = s + " argument"
default:
s = s + " arguments"
}
return nil, &ParseError{
Found: fmt.Sprintf("%s() with %d arguments", fnc.Name, len(fnc.Args)),
Expected: []string{s},
}
}
return
}
func (p *parser) parsePath(expr ...Expr) (path *PathExpression, err error) {
defer func() {
if val, ok := path.Expr[len(path.Expr)-1].(*JoinExpression); ok {
if val.Join == DOT {
err = &ParseError{
Found: fmt.Sprintf("."),
Expected: []string{"field expression"},
}
}
}
}()
path = &PathExpression{}
// Take the previosuly scanned expression
// and append it to the path expression
// tree as the first item.
for _, e := range expr {
switch v := e.(type) {
case Token:
path.Expr = append(path.Expr, &JoinExpression{Join: v})
default:
path.Expr = append(path.Expr, &PartExpression{Part: v})
}
}
// If the last expression passed in was a
// path joiner (->, <-, or <->), then we
// need to process a path part first.
if _, ok := expr[len(expr)-1].(Token); ok {
var part Expr
part, err = p.parseStep()
if err != nil {
return
}
if part == nil {
return
}
path.Expr = append(path.Expr, &PartExpression{Part: part})
}
for {
var join Expr
var part Expr
// We expect the next token to be a join
// operator (->, <-, or <->), otherwise we
// are at the end of the path and will
// ignore it and return.
join, err = p.parseJoin()
if err != nil {
return
}
if join == nil {
return
}
path.Expr = append(path.Expr, &JoinExpression{Join: join.(Token)})
// We expect the next token to be a path
// part identifier, otherwise we are at
// the end of the path and will ignore it
// and return.
part, err = p.parseStep()
if err != nil {
return
}
if part == nil {
return
}
path.Expr = append(path.Expr, &PartExpression{Part: part})
}
}
func (p *parser) parseJoin() (exp Expr, err error) {
toks := []Token{
DOT, OEDGE, IEDGE, BEDGE,
}
tok, _, _ := p.scan()
if !in(tok, toks) {
p.unscan()
return
}
return tok, err
}
func (p *parser) parseStep() (exp Expr, err error) {
toks := []Token{
QMARK, IDENT, THING, LPAREN, EXPR, MUL,
}
tok, lit, _ := p.scan()
// We need to declare the type up here instead
// of at the bottom, as the held value might
// be overwritten by the next token scan.
exp, err = p.declare(tok, lit)
if err != nil {
return nil, err
}
// If the current token is a left parenthesis
// bracket, then we will parse this complete
// expression part as a subquery.
if is(tok, LPAREN) {
return p.parseSubp()
}
// If this expression is not a sub-path
// expression, then check to see if the
// token is in the list of allowed tokens.
if !in(tok, toks) {
p.unscan()
exp = nil
}
return
}
func (p *parser) parseSubp() (stmt *SubpExpression, err error) {
stmt = &SubpExpression{}
// IMPORTANT maybe we should not accept any expression here
if stmt.What, err = p.parseWhat(); err != nil {
return nil, err
}
if _, _, exi := p.mightBe(AS); exi {
if stmt.Name, err = p.parseIdent(); err != nil {
return nil, err
}
}
if stmt.Cond, err = p.parseCond(); err != nil {
return nil, err
}
if _, _, err = p.shouldBe(RPAREN); err != nil {
return nil, err
}
return
}